Metal-enriched Neutral Gas Reservoir around a Strongly Lensed Low-mass Galaxy

Xiaojing Lin¹, Zheng Cai¹, Siwei Zou¹, Zihao Li¹, Zuyi Chen², Fuyan Bian³, Fengwu Sun², Yiping Shu⁴, Yunjing Wu^{1,2}, Mingyu Li¹, Jianan Li¹, Xiaohui Fan², J. Xavier Prochaska^{5,6}, Daniel Schaerer⁷, Stephane Charlot⁸, Daniel Espada^{9,10}, Miroslava Dessauges-Zavadsky¹¹, Eiichi Egami², Daniel Stark², Kirsten K. Knudsen¹², Gustavo Bruzual¹³, and Jacopo Chevallard¹⁴ ¹ Tsinghua University ²Steward Observatory ³European Southern Observatory ⁴Purple Mountain Observatory ⁴Purple Mountain Observatory ⁴CSC ⁶Kavli IPMU ⁷Observatoire de Geneve ⁸Sorbonne Université ⁹Departamento de Física Teórica y del Cosmos ¹⁰Instituto Carlos I de Física Teórica y Computacional ¹¹University of Geneva ¹²Chalmers University of Technology, ¹³National Autonomous University of Mexico

Direct observations of low-mass, low-metallicity galaxies at $z \ge 4$ provide an indispensable opportunity for detailed inspection of the ionization radiation, gas flow, and metal enrichment in sources similar to those that reionized the universe. Combining the James Webb Space Telescope (JWST) and Very Large Telescope/MUSE we present detailed observations of a strongly lensed, low-mass ($\approx 10^{7.6} M_{\odot}$) galaxy at z = 3.98. Our observations suggest that low-mass, low-metallicity galaxies, which dominate reionization, could be surrounded by a high covering fraction of the metal-enriched, neutral-gaseous clouds.

VLT/MUSE reveals an associated extremely strong

OI 1302

-250

SiIV 1402

Velocity relative to z = 3.980 (km/s)

SiII 1260

JWST/NIRISS slitless grism indicates a metal-poor HII region with ionization states

- Abubdant metal absorbers in the ESDLA with tentative P-Cygni profiles imply ongoing metal enrichment process by the young stellar feedback.
- Significant high-ionization nebular emission lines, C IV λ 1548, 1550, He II λ 1640, O III] λ1661, 1666 indicate hard ionizing radiation fields and the low-metallicity nature. Their line ratios favor the explanation of photoionization due to massive stars rather than AGNs (Gutkin et al. 2016).

Strong Balmer and [OII], [NeIII] emission lines serve as an indicator of the metal-poor HII region: $12 + \log(O/H) \approx 7.75 \pm 0.05$, i. e. Z \approx $0.12Z_{\odot}$ based on the empirical metallicity calibrations (Bian et al. 2018).

The UV slope β ($f_{\lambda} \propto \lambda^{\beta}$) reaches -2.5 around those small stellar clumps on the physical scale down to <100pc in the source-plane. This further confirms the extreme ionizing conditions, making A2744-arc3 a textbook example to get an unparalleled view of low-mass galaxies at the epoch of reionizaiton. JWST source plane

The schematic toy model of A2744-arc3 as a low-mass, lowmetallicity galaxy with high-metallicity neutral gas reservoir.

- The hard ionization field from compact and bursty starforming regions forms hot, thin, and highly ionized HII regions, where strong narrow nebular emission lines are produced
- The CGM geometry determines the shape of Ly α emission/absorption we observed: damped Ly α / partially obscured / Ly α emission with underlying absorption.

Feedback from central star formation, such as stellar winds, lacksquarecould metal enrich the neutral gas, leading to strong metal absorbers with P-Cygni profiles. The recycled neutral gas can further efficiently fuel the next-generation star formation.

Our Paper

Lin et al. 2023, The ApJL, 944, 59. 10.3847/2041-8213/aca1c4 10.48550/arXiv.2209.03376

Contact Me

linxj21@mails.tsinghua.edu.cn

